cyclic matroid - определение. Что такое cyclic matroid
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cyclic matroid - определение

MATROID WHOSE INDEPENDENT SETS ARE FORESTS IN AN UNDIRECTED GRAPH
Cycle matroid; Graphical matroid
  • Two different graphs (red) that are duals of the same planar graph (pale blue). Despite being non-isomorphic as graphs, they have isomorphic graphic matroids.

Graphic matroid         
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids.
Cyclic peptide         
  • α-Amanitin]]
  • [[Bacitracin]]
  • [[Ciclosporin]]
PEPTIDE CHAINS WHICH CONTAIN A CIRCULAR SEQUENCE OF BONDS
Cyclic peptides; Peptides, cyclic; Cyclic polypeptides; Cyclic protein; Cyclic polypeptide; Cyclopeptides; Cyclopeptide; Peptide macrocycle
Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chain, for example in bacitracin; the carboxyl end and a side chain, for example in colistin; or two side chains or more complicated arrangements, for example in amanitin.
Vámos matroid         
  • The Vámos matroid; the shaded parallelograms depict its five circuits of size four
MATROID WITH NO LINEAR REPRESENTATION
Vamos matroid
In mathematics, the Vámos matroid or Vámos cube is a matroid over a set of eight elements that cannot be represented as a matrix over any field. It is named after English mathematician Peter Vámos, who first described it in an unpublished manuscript in 1968..

Википедия

Graphic matroid

In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.